像素的概念?


像素的概念?

文章插图
“像素”(Pixel) 是由 Picture(图像) 和 Element(元素)这两个单词所组成的是最小的图像单元,这种最小的图形的单元能在屏幕上显示通常是单个的染色点 。像素是衡量数码相机的最重要指标 。像素指的是数码相机的分辨率 。它是由相机里的光电传感器上的光敏元件数目所决定的,一个光敏元件就对应一个像素 。因此像素越大,意味着光敏元件越多,相应的成本就越大 。数码相机的图像质量是由像素决定的,像素越大,照片的分辨率也越大,打印 尺寸在不降低打印质量的同时也越大 。早期的数码相机都是低于100万像素的 。从1999年下半年开始,200万像素的产品渐渐成为市场的主流 。当前的数码相机的发展 趋势,像素宛如PC机的CPU主频,有越来越大的势头 。其实从市场分类角度看,面向普及型的产品,考虑性价比的因素,像素并不是 越大越好 。毕竟200万像素的产品,已经能够满足目前普通消费者的大多数应用 。因 此大多数厂商在高端数码相机追求高像素的同时,当前其产量最大的,仍是面向普 及型的百万像素产品 。专业级的数码相机,已有超过1亿像素级的产品 。而300万像 素级的产品,将随着CCD(成像芯片)制造技术的进步和成本的进一步下降,也将很 快成为消费市场的主流 。另外值得消费者注意的是,当前的数码相机产品,在像素标称上分为CCD像素和经软件优化后的像素,后者大大高于前者 。如某品牌目前流行的数码相机,其CCD像素为230万,而软件优化后的像素可达到330万 。综述一个像素通常被视为图像的最小的完整采样 。这个定义和上下文很相关 。例如,我们可以说在一幅可见的图像中的像素(例如打印出来的一页)或者用电子信号表示的像素,或者用数码表示的像素,或者显示器上的像素,或者数码相机(感光元素)中的像素 。这个列表还可以添加很多其它的例子,根据上下文,会有一些更为精确的同义词,例如画素,采样点,字节,比特,点,斑,超集,三合点,条纹集,窗口,等等 。我们也可以抽象地讨论像素,特别是使用像素作为解析度地衡量时,例如2400像素每英寸(ppi)或者640像素每线 。点有时用来表示像素,特别是计算机市场营销人员,因此ppi有时所写为DPI(dots per inch) 。用来表示一幅图像的像素越多,结果更接近原始的图像 。一幅图像中的像素个数有时被称为图像解析度,虽然解析度有一个更为特定的定义 。像素可以用一个数表示,譬如一个"3兆像素" 数码相机,它有额定三百万像素,或者用一对数字表示,例如"640乘480显示器",它有横向640像素和纵向480像素(就像VGA显示器那样),因此其总数为640 × 480 = 307,200像素 。数字化图像的彩色采样点(例如网页中常用的JPG文件)也称为像素 。取决于计算机显示器,这些可能不是和屏幕像素有一一对应的 。在这种区别很明显的区域,图像文件中的点更接近纹理元素 。在计算机编程中,像素组成的图像叫位图或者光栅图像 。光栅一词源于模拟电视技术 。位图化图像可用于编码数字影像和某些类型的计算机生成艺术 。原始和逻辑像素因为多数计算机显示器的解析度可以通过计算机的操作系统来调节,显示器的像素解析度可能不是一个绝对的衡量标准 。现代液晶显示器按设计有一个原始解析度,它代表像素和三元素组之间的完美匹配 。(阴极射线管也是用红-绿-蓝荧光三元素组,但是它们和图像像素并不重合,因此和像素无法比较) 。对于该显示器,原始解析度能够产生最精细的图像 。但是因为用户可以调整解析度,显示器必须能够显示其它解析度 。非原始解析度必须通过在液晶屏幕上拟合重新采样来实现,要使用插值算法 。这经常会使屏幕看起来破碎或模糊 。例如,原始解析度为1280×1024的显示器在解析度为1280×1024时看起来最好,也可以通过用几个物理三元素组来表示一个像素以显示800×600,但可能无法完全显示1600×1200的解析度,因为物理三元素组不够 。像素可以是长方形的或者方形的 。有一个数称为长宽比,用于表述像素有多方 。例如1.25:1的长宽比表示每个像素的宽是其高度的1.25倍 。计算机显示器上的像素通常是方的,但是用于数字影像的像素有矩形的长宽比,例如那些用于CCIR 601数字图像标准的变种PAL和NTSC制式的,以及所对应的宽屏格式 。单色图像的每个像素有自己的辉度 。0通常表示黑,而最大值通常表示白色 。例如,在一个8位图像中,最大的无符号数是255,所以这是白色的值 。在彩色图像中,每个像素可以用它的色调,饱和度,和亮度来表示,但是通常用红绿蓝强度来表示(参看红绿蓝).比特每像素一个像素所能表达的不同颜色数取决于比特每像素(BPP) 。这个最大数可以通过取二的色彩深度次幂来得到 。例如,常见的取值有8 bpp [28=256; (256色)], 16 bpp [216=65536; (65,536色,称为高彩色)], 24 bpp [224=16777216; (16,777,216色,称为真彩色)] 。48 bpp [248=281474976710656; (281,474,976,710,656色,用于很多专业的扫描仪) 256色或者更少的色彩的图形经常以块或平面格式存储于显存中,其中显存中的每个像素是到一个称为调色板的颜色数组的索引值 。这些模式因而有时被称为索引模式 。虽然每次只有256色,但是这256种颜色选自一个选择大的多的调色板,通常是16兆色 。改变调色板中的色彩值可以得到一种动画效果 。视窗95和视窗98的标志可能是这类动画最著名的例子了 。对于超过8位的深度,这些数位就是三个分量(红绿蓝)的各自的数位的总和 。一个16位的深度通常分为5位红色和5位蓝色,6位绿色(眼睛对于绿色更为敏感) 。24位的深度一般是每个分量8位 。在有些系统中,32位深度也是可选的:这意味着24位的像素有8位额外的数位来描述透明度 。在老一些的系统中,4bpp(16色)也是很常见的 。当一个图像文件显示在屏幕上,每个像素的数位对于光栅文本和对于显示器可以是不同的 。有些光栅图像文件格式相对其他格式有更大的色彩深度 。例如GIF格式,其最大深度为8位,而TIFF文件可以处理48位像素 。没有任何显示器可以显示48位色彩,所以这个深度通常用于特殊专业应用,例如胶片扫描仪和打印机 。这种文件在屏幕上采用24位深度绘制 。子像素很多显示器和图像获取系统出于不同原因无法显示或感知同一点的不同色彩通道 。这个问题通常通过多个子像素的办法解决,每个子像素处理一个色彩通道 。例如,LCD显示器通常将每个像素水平分解位3个子像素 。多数LED显示器将每个像素分解为4个子像素;一个红,一个绿,和两个蓝 。多数数码相机传感器也采用子像素,通过有色滤波器实现 。(CRT显示器也采用红绿蓝荧光点,但是它们和图像像素并不对齐,因此不能称为子像素) 。对于有子像素的系统,有两种不同的处理方式:子像素可以被忽略,将像素作为最小可以存取的图像元素,或者子像素被包含到绘制计算中,这需要更多的分析和处理时间,但是可以在某些情况下提供更出色的图像 。后一种方式被用于提高彩色显示器的外观解析度 。这种技术,被称为子像素绘制,利用了像素几何来分别操纵子像素,对于设为原始解析度的平面显示器来讲最为有效(因为这种显示器的像素几何通常是固定的而且是已知的) 。这是反锯齿的一种形式,主要用于改进文本的显示 。微软的ClearType,在Windows XP上可用,是这种技术的一个例子 。兆像素一个兆像素(megapixel)是一百万个像素,通常用于表达数码相机的解析度 。例如,一个相机可以使用2048×1536像素的解析度,通常被称为有"3.1百万像素" (2048 × 1536 = 3,145,728) 。数码相继使用感光电子器件,或者是耦合电荷设备(CCDs)或者CMOS传感器,它们记录每个像素的辉度级别 。在多数数码相机中,CCD采用某种排列的有色滤波器,在Bayer滤波器拼合中带有红,绿,蓝区域,使得感光像素可以记录单个基色的辉度 。相机对相邻像素的色彩信息进行插值,这个过程称为解拼(de-mosaic),然后建立最后的图像 。这样,一个数码相机中的x兆像素的图像最后的彩色解析度最后可能只有同样图像在扫描仪中的解析度的四分之一 。这样,一幅蓝色或者红色的物体的图像倾向于比灰色的物体要模糊 。绿色物体似乎不那么模糊,因为绿色被分配了更多的像素(因为眼睛对于绿色的敏感性) 。参看[1]的详细讨论 。作为一个新的发展,Foveon X3 CCD采用三层图像传感器在每个像素点探测红绿蓝强度 。这个结构消除了解拼的需要因而消除了相关的图像走样,例如高对比度的边的色彩模糊这种走样 。类似概念从像素的思想衍生出几个其它类型的概念,例如体素(voxel),纹素(texel)和曲面元素(surfel),它们被用于其它计算机图形学和图像处理应用 。“像素画”像素其实是由很多个点组成 。我们这里说的“像素画”并不是和矢量图对应的点阵式图像,而是指的一种图标风格的图像,此风格图像强调清晰的轮廓、明快的色彩,同时像素图的造型往往比较卡通,因此得到很多朋友的喜爱 。像素图的制作方法几乎不用混叠方法来绘制光滑的线条,所以常常采用.gif格式,而且图片也经常以动态形式出现.但由于其特殊的制作过程,如果随意改变图片的大小,风格就难以保证了 。像素画的应用范围相当广泛,从小时候玩的FC家用红白机的画面直到今天的GBA手掌机;从黑白的手机图片直到今天全彩的掌上电脑;即使我们日以面对的电脑中也无处不充斥着各类软件的像素图标 。如今像素画更是成为了一门艺术,深深的震撼着你我 。像素:是指位图图像高度和宽度的像素数目 。

推荐阅读