【实变函数是学习什么?】
文章插图
以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论 。它是微积分学的进一步发展,它的基础是点集论 。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论 。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的 。比如,点集函数、序列、极限、连续性、可微性、积分等 。实变函数论还要研究实变函数的分类问题、结构问题 。实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等 。这里我们只对它的一些重要的基本概念作简要的介绍 。实变函数论的积分理论研究各种积分的推广方法和它们的运算规则 。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测度 。什么是测度呢?简单地说,一条线段的长度就是它的测度 。测度的概念对于实变函数论十分重要 。集合的测度这个概念实由法国数学家勒贝格提出来的 。为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分 。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度 。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念 。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题 。
推荐阅读
- 木瓜怎么吃?
- 海参是越大越好吗
- 海参是放冷冻还是冷藏
- 海参是不是越大越好
- 海参生长在哪里
- 电影演员张瑜个人资料简介近况照片 张瑜的第2任老公及女儿是谁
- 海参海燕窝是什么
- 海边抓的小螃蟹请问是什么品种
- 樱桃软了还能吃吗
- 智利车厘子是樱桃吗