角元塞瓦定理?


角元塞瓦定理?

文章插图
从角元第一个等式,化出 sin(a) (cos 24°-cos60° +cos36°sin54°) = sin36°sin54° cos(a)
再化出 sin(a)(2cos24° + sin18°) = cos18° cos(a)
再化出sin(a)( 2cos24° + cos72°) = sin72° cos(a)
【角元塞瓦定理?】再化出 sin(a) (4 cos^2(24°) - 1) cos 24° = cos(a) sin24°( 3-4 sin^2(24°))
再化出 (sin(a) cos24° - cos(a) sin24°)*( 2 cos 48° + 1) = 0
再化出 sin(a-24°)=0
于是a=24°

    推荐阅读