谁能给我详细解释一下宇称不守恒是怎么回事啊。( 二 )


吴健雄用两套实验装置观测钴60的衰变,她在极低温(0.01K)下用强磁场把一套装置中的钴60**核自旋方向转向左旋,把另一套装置中的钴60**核自旋方向转向右旋,这两套装置中的钴60互为镜像 。实验结果表明,这两套装置中的钴60放射出来的电子数有很大差异,而且电子放射的方向也不能互相对称 。实验结果实了弱相互作用中的宇称不守恒 。
我们可以用一个类似的例子来说明问题 。假设有两辆互为镜像的汽车,汽车A的司机坐在左前方座位上,油门踏板在他的右脚附近;而汽车B的司机则坐在右前方座位上,油门踏板在他的左脚附近 。现在,汽车A的司机顺时针方向开动点火钥匙,把汽车发动起来,并用右脚踩油门踏板,使得汽车以一定的速度向前驶去;汽车B的司机也做完全一样的动作,只是左右交换一下——他反时针方向开动点火钥匙,用左脚踩油门踏板,并且使踏板的倾斜程度与A保持一致 。现在,汽车B将会如何运动呢?
也许大多数人会认为,两辆汽车应该以完全一样的速度向前行驶 。遗憾的是,他们犯了想当然的毛病 。吴健雄的实验明了,在粒子世界里,汽车B将以完全不同的速度行驶,方向也未必一致!——粒子世界就是这样不可思议地展现了宇称不守恒 。宇宙源于不守恒 [编辑本段] 宇称不守恒的发现并不事立的 。
在微观世界里,基本粒子有三个基本的对称方式:一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷(C)对称;一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称(P);一个是时间反演对称,即如果我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间(T)对称 。
这就是说,如果用反粒子代替粒子、把左换成右,以及颠倒时间的流向,那么变换后的物理过程仍遵循同样的物理定律 。
但是,自从宇称守恒定律被李政道和杨振宁打破后,科学家很快又发现,粒子和反粒子的行为并不是完全一样的!一些科学家进而提出,可能正是由于物理定律存在轻微的不对称,使粒子的电荷(C)不对称,导致宇宙大爆炸之初生成的物质比反物质略多了一点点,大部分物质与反物质湮灭了,剩余的物质才形成了我们今天所认识的世界 。如果物理定律严格对称,宇宙连同我们自身就都不会存在了——宇宙大爆炸之后应当诞生了数量相同的物质和反物质,但正反物质相遇后就会立即湮灭,那么,星系、地球乃至人类就都没有机会形成了 。
接下来,科学家发现连时间本身也不再具有对称性了!可能大多数人原本就认为时光是不可倒流的 。日常生活中,时间之箭永远只有一个朝向,“逝者如斯”,老人不能变年轻,打碎的花瓶无法复原,过去与未来的界限泾渭分明 。不过,在物理学家眼中,时间却一直被视为是可逆转的 。比如说一对光子碰撞产生一个电子和一个正电子,而正负电子相遇则同样产生一对光子,这两个过程都符合基本物理学定律,在时间上是对称的 。如果用摄像机拍下其中一个过程然后播放,观看者将不能判断录像带是在正向还是逆向播放——从这个意义上说,时间没有了方向 。
然而,1998年年末,物理学家们却首次在微观世界中发现了违背时间对称性的事件 。欧洲**能研究中心的科研人员发现,正负K介子在转换过程中存在时间上的不对称性:反K介子转换为K介子的速率要比其逆转过程——即K介子转变为反K介子来得要快 。
至此,粒子世界的物理规律的对称性全部破碎了,世界从本质上被明了是不完美的、有缺陷的 。发现过程 [编辑本段] 杨振宁、李政道和吴健雄是中国老百姓耳熟能详的名字,他们的事业巅峰和“宇称”紧紧联系在一起 。

推荐阅读